inform and support global sustainability goals
<br />and pathways. This evolution is needed more
<br />than ever before; there are severe implementa-
<br />tion gaps in many global environmental policies
<br />relating to the PB issues, where problematic
<br />trends are not being halted or reversed despite
<br />international consensus about the urgency of the
<br />problems. The prospect of tighter resource con-
<br />straints and rising environmental hazards is also
<br />unavoidably turning the focus onto global social
<br />equity and the planetary stewardship of Earth's
<br />life- support system. There is a need for a truly
<br />global evidence base, with much greater integra-
<br />tion among issues, in order to respond to these
<br />global challenges. New research initiatives [e.g.,
<br />Future Earth (www.futureearth.org)] provide evi-
<br />dence that science can respond to this need by
<br />applying Earth - system research to advance a new
<br />generation of integrated global analyses and to
<br />explore options for transformations toward sus -
<br />tainability. This is a clear sign that, as the risks
<br />of the Anthropocene to human well-being be-
<br />come clearer, research is maturing to a point
<br />where a systemic step - change is possible -and
<br />necessary -in exploring and defining a safe and
<br />just planetary operating space for the further
<br />development of human societies.
<br />Methods summary
<br />Our approach to building the planetary bound-
<br />aries framework is described above. We have
<br />implemented the framework through an ex-
<br />pert assessment and synthesis of the scientific
<br />knowledge of intrinsic biophysical processes that
<br />regulate the stability of the Earth system. Our
<br />precautionary approach is based on the main-
<br />tenance of a Holocene -like state of the Earth
<br />system and on an assessment of the level of
<br />human - driven change that would risk destabi-
<br />lizing this state. For the climate change PB, there
<br />is already much literature on which to base
<br />such an assessment. For others, such as strato-
<br />spheric ozone, ocean acidification, extinction
<br />rates, and P and N cycles, we have used estimates
<br />of preindustrial values of the control variable
<br />as a Holocene baseline. Where large, undesira-
<br />ble thresholds exist and have been studied (e.g.,
<br />polar ice sheets, Amazon rainforest, aragonite
<br />dissolution, atmospheric aerosols, and the south
<br />Asian monsoon), quantitative boundaries can be
<br />readily proposed. For others, where the focus is
<br />on erosion of Earth - system resilience, the bound-
<br />aries are more difficult (but not impossible) to
<br />quantify, as reflected in larger uncertainty zones.
<br />We used large -scale assessments of the impacts
<br />of human activities on Earth - system functioning
<br />[e.g., Intergovernmental Panel on Climate Change
<br />(17 18), the International Geosphere- Biosphere
<br />Programme synthesis (16), and chemicals (75, SO)]
<br />as sources of community -level understanding
<br />on which to propose PBs. Our update has also
<br />relied on post -2009 assessments of individual
<br />boundaries by the relevant expert research com-
<br />munities; examples include phosphorus (3), ni-
<br />trogen (5), biosphere integrity (7), freshwater use
<br />(5, 63), and novel entities [with a focus on chem-
<br />icals (28, 73)]. Finally, some new analyses have
<br />been undertaken specifically for this paper: (i) a
<br />freshwater -use PB based on the EWF approach
<br />(33, 63); (ii) the linkage of the phosphorus and
<br />nitrogen boundaries via the N:P ratio in grow-
<br />ing crop tissue (33); and (iii) the use of major
<br />forest biomes as the basis for the land - system
<br />change PB (33).
<br />REFERENCES AND NOTES
<br />1. J. Rockstrom et al., Planetary boundaries: Exploring the safe
<br />operating space for humanity. Ecol. Sec. 14, 32 (2009).
<br />http: / /www.ecologyandsoclety .org /voII4 /Iss2 /art32/
<br />2. J. Rockstrom et al., A safe operating space for humanity.
<br />Nature 461, 472 -475 (2009). doi: 10.1038/461472a;
<br />Amid: 19779433
<br />3. S. R. Carpenter, E. M. Bennett, Reconsideration of the
<br />planetary boundary for phosphorus. Environ. Res. Lett. 6,
<br />014009 (2011). doi: 10.1088/1748 - 9326/6/1/014009
<br />4. S. W. Running, Ecology. A measurable planetary boundary
<br />for the biosphere. Science 337, 1458 -1459 (2012).
<br />doi: 10.112E /sclence.1227620; Amid: 22997311
<br />5. W. de Vries, J. Kros, C. Kroeze, S. P. Seitzinger, Assessing
<br />planetary and regional nitrogen boundaries related to food
<br />security and adverse environmental impacts. Curr. Opinion
<br />Environ. Sust. 5, 392 -402 (2013). doi: 10.1016/
<br />j.cosust.2013.07.004
<br />6. D. Gerten et al., Towards a revised planetary boundary for
<br />consumptive freshwater use Role of environmental flow
<br />requirements. Curc Opinion Environ. Sust. 5, 551 -558 (2013).
<br />doi: 10.101E /j.cosust.2013.11.001
<br />7. G. M. Mace et al., Approaches to defining a planetary boundary
<br />for biodiversity. Glob. Environ. Change 28, 289 -297 (2014).
<br />doi: 10.101E /j.gloenvc ha.2014.07.009
<br />8. V. Galaz, Global Environmental Governance, Technology and
<br />Politics: The Anthropocene Gap. (Edward Elgar, Cheltenham,
<br />UK, 2014).
<br />9. UN GSP (UN High -Level Panel on Global Sustainability),
<br />Resilient People, Resilient Planet: A Future Worth Choosing
<br />(Report for the 2012 Rio +20 Earth Summit, United Nations,
<br />New York, 2012).
<br />10. WBCSD (World Business Council on Sustainable Development),
<br />Action 2020 Overview (WBCSD, Geneva, Switzerland,
<br />http: / /actlon2O2O.org, accessed 18 June 2014).
<br />11. R. Costanza, L. Graumlich, W. Steffen, Eds., Integrated History
<br />and Future of People on Earth (MIT Press, Cambridge,
<br />MA USA, 2006).
<br />12. S. Sorlin, P. Warde, in Nature's End: History and the
<br />Environment, S. Sorlin, P. Warde, Eds. (Palgrave MacMillan,
<br />London, 2009), pp. 1 -19.
<br />13. R. C. Bishop, Endangered species and uncertainty: The
<br />economics of a safe minimum standard. Am. J. Agric. Econ. 61,
<br />10 -18 (1978). doi: 10.2307/1240156
<br />14. T. M. Crowards, Safe minimum standards: Costs and
<br />opportunities. Ecol. Econ. 25, 303 -314 (1998). doi: 10.1016/
<br />S0921- 8009(97)00041 -4
<br />15. W. Steffen, J. Crutzen, I R. McNeill, The Anthropocene: Are
<br />humans now overwhelming the great forces of Nature?
<br />Ambio 36, 614 -621 (2007). doi: 10.1579/0044 - 7447(2007)36
<br />[614:TAAHNOJ2.0.CO;2; Amid: 18240674
<br />16. W. Steffen et al., Global Change and the Earth System: A Planet
<br />Under Pressure (The IGBP Book Series, Springer - Verlag,
<br />Berlin, Heidelberg, New York, 2004).
<br />17. IPCC (Intergovernmental Panel on Climate Change), Managing
<br />the risks of extreme events and disasters to advance
<br />climate change adaptation. A special report of Working Groups
<br />I and II of the IPCC. C.B. Field et al., Eds. (Cambridge
<br />University Press, Cambridge, UK (2012). doi: 10.1017/
<br />CB09781139177245
<br />18. IPCC (Intergovernmental Panel on Climate Change), Climate
<br />Change 2013: The Physical Science Basis. Summary for
<br />Policymakers., L. Alexander et al., Eds. (IPCC Secretariat,
<br />Geneva, Switzerland, 2013). doi: 10.1017/CB09781107415324
<br />19. P. J. Crutzen, Geology of mankind. Nature 415, 23 (2002).
<br />doi: 10.1038/415023a; Amid: 11780095
<br />20. K. Richardson, W. Steffen, D. Liverman, Climate Change: Global
<br />Risks, Challenges and Decisions (Cambridge Univ. Press,
<br />Cambridge, UK, 2011).
<br />21. T. M. Lepton et al., Tipping elements in the Earth's climate
<br />system. Proc. Natl. Acad. Sci. U.S.A. 105, 1786 -1793 (2008).
<br />doi: 10.1073/pnas.0705414105; Amid: 18258748
<br />RESEARCH ( RESEARCHARTICLE
<br />22. M. Scheffer et al., Early- warning signals for critical
<br />transitions. Nature 461, 53 -59 (2009). doi: 10.1038/
<br />natureO8227; Amid: 19727193
<br />23. S. R. Carpenter, W. A. Brock, Rising variance: A leading
<br />indicator of ecological transition. Ecol. Lett. 9, 311 -318 (2006).
<br />doi: 10.1111/j.1461- 0248.2005.00877.x; Amid: 16958897
<br />24. 1 Bakke et al., Rapid oceanic and atmospheric changes during
<br />the Younger Dryas cold period. Nat. Geosci. 2, 202 -205
<br />(2009). doi: 10.1038 /ngeo439
<br />25. M. Scheffer et al., Anticipating critical transitions. Science
<br />338, 344 -348 (2012). doi: 10.112E /sclence.1225244;
<br />pmid:23087241
<br />26. R. Wang et al., Flickering gives early warning signals of a
<br />critical transition to a eutrophic lake state. Nature 492,
<br />419 -422 (2012). doi: 10.1038 /nature11655; Amid: 23160492
<br />27. R. Biggs, S. R. Carpenter, W. A. Brock, Turning back from
<br />the brink: Detecting an impending regime shift in time to avert
<br />it. Proc. Natl. Acad. Sci. U.S.A. 106, 826 -831 (2009).
<br />doi: 10.1073/pnas.0811729106; Amid: 19124774
<br />28. M. MacLeod et al., Identifying chemicals that are planetary
<br />boundary threats. Environ. Sci. Technol. 48, 11057 -11063
<br />(2014). doi: 10.1021/es501893m; Amid: 25181298
<br />29. C. S. Holling, Resilience and stability of ecological systems.
<br />Annu. Rev. Ecol. Syst. 4, 1 -23 (1973). doi: 10.1146 /annurev.es.
<br />04.110173.000245
<br />30. C. Folke et al., Resilience thinking: Integrating resilience,
<br />adaptability and transformability. Ecol. Sec. 15, 20 (2010).
<br />www.ecologyandsoclety .org /voII5 /Iss4 /art2O
<br />31. T. P. Hughes, S. Carpenter, I Rockstrom, M. Scheffer,
<br />B. Walker, Multiscale regime shifts and planetary boundaries.
<br />Trends Ecol. Evol. 28, 389 -395 (2013). doi: 10.1016/
<br />j.tree.2013.05.019; Amid: 23769417
<br />32. T. M. Lepton, H. T. P. Williams, On the origin of planetary -scale
<br />tipping points. Trends Ecol. Evol. 28, 380 -382 (2013).
<br />doi: 10.101E /j.tree.2013.06.001; Amid: 23777818
<br />33. Supplementary text, figures, and tables are available on
<br />Science Online.
<br />34. NOAA (National Oceanic and Atmospheric Administration),
<br />NOAA -ESRL Annual CO2 Data, accessed at: http: / /co2now.
<br />org /Current- CO2 /CO2 -Now /annual- co2.htmI (2014).
<br />35. S. E. Perkins, L. V. Alexander, J. Nairn, Increasing frequency,
<br />intensity and duration of observed global heat waves and warm
<br />spells. Geophys. Res. Lett. 39, L20714 (2012). doi: 10.1029/
<br />2012GLO53361
<br />36. A. Shepherd et al., A reconciled estimate of ice -sheet mass
<br />balance. Science 338, 1183 -1189 (2012). doi: 10.1126/
<br />sclence.1228102; Amid: 23197528
<br />37. M. R. Helmus, T. J. Bland, C. K. Williams, A. R. Ives,
<br />Phylogenetic measures of biodiversity. Am. Nat. 169, E68 -E83
<br />(2007). doi: 10.1086/511334; Amid: 17230400
<br />38. S. D'agata et al., Human - mediated loss of Phylogenetic
<br />and functional diversity in coral reef fishes. Corr. Biol.
<br />24, 555 -560 (2014). doi: 10.101E /j.cub.2014.01.049;
<br />pmid:24560574
<br />39. A. D. Barnosky et al., Has the Earth's sixth mass extinction
<br />already arrived? Nature 471, 51 -57 (2011). doi: 10.1038/
<br />nature09678; Amid: 21368823
<br />40. N. W. Mason, F. de Bello, D. Mouillot, S. Pavoine, S. Dray, A
<br />guide for using functional diversity indices to reveal changes
<br />in assembly processes along ecological gradients. J. Veg.
<br />Sci. 24, 794 -806 (2013). doi: 10.1111 /jvs.12013
<br />41. R. J. Scholes, R. Biggs, A biodiversity intactness index. Nature
<br />434, 45 -49 (2005). doi: 10.1038 /natureO3289;
<br />pmid:15744293
<br />42. B. Cardinale, Ecology. Impacts of biodiversity loss. Science
<br />336, 552 -553 (2012). doi: 10.1126 /sclence.1222102;
<br />pmid:22556243
<br />43. D. U. Hooper et al., A global synthesis reveals biodiversity
<br />loss as a major driver of ecosystem change. Nature 486,
<br />105 -108 (2012). doi: 10.1038 /nature11118;pmid: 22678289
<br />44. BAS (British Antarctic Survey), "Antarctic ozone" www.
<br />antarctica.ac.uk/ met /jds /ozone /index.html#data, I Shanklin,
<br />British Antarctic Survey (2013).
<br />45. Royal Society, Ocean Acidification Due to Increasing
<br />Atmospheric Carbon Dioxide. Policy Document 12/05 (The
<br />Royal Society, London, 2005).
<br />46. 1 M. Guinotte, V. J. Fabry, Ocean acidification and its potential
<br />effects on marine ecosystems. Ann. N. V. Acad. Sci. 1134,
<br />320 -342 (2008). doi: 10.119E /annals.14 39.013;pmid: 18566099
<br />47. D. J. Conley, Terrestrial ecosystems and the global
<br />biogeochemical silica cycle. Global Biogeochem. Cycles 16,
<br />681 -688 (2002). doi: 10.1029/2002GBOO1894
<br />SCIENCE sciencemag.org 13 FEBRUARY 2015 • VOL 347 ISSUE 6223 1259555 -9
<br />
|