Orange County NC Website
inform and support global sustainability goals <br />and pathways. This evolution is needed more <br />than ever before; there are severe implementa- <br />tion gaps in many global environmental policies <br />relating to the PB issues, where problematic <br />trends are not being halted or reversed despite <br />international consensus about the urgency of the <br />problems. The prospect of tighter resource con- <br />straints and rising environmental hazards is also <br />unavoidably turning the focus onto global social <br />equity and the planetary stewardship of Earth's <br />life- support system. There is a need for a truly <br />global evidence base, with much greater integra- <br />tion among issues, in order to respond to these <br />global challenges. New research initiatives [e.g., <br />Future Earth (www.futureearth.org)] provide evi- <br />dence that science can respond to this need by <br />applying Earth - system research to advance a new <br />generation of integrated global analyses and to <br />explore options for transformations toward sus - <br />tainability. This is a clear sign that, as the risks <br />of the Anthropocene to human well-being be- <br />come clearer, research is maturing to a point <br />where a systemic step - change is possible -and <br />necessary -in exploring and defining a safe and <br />just planetary operating space for the further <br />development of human societies. <br />Methods summary <br />Our approach to building the planetary bound- <br />aries framework is described above. We have <br />implemented the framework through an ex- <br />pert assessment and synthesis of the scientific <br />knowledge of intrinsic biophysical processes that <br />regulate the stability of the Earth system. Our <br />precautionary approach is based on the main- <br />tenance of a Holocene -like state of the Earth <br />system and on an assessment of the level of <br />human - driven change that would risk destabi- <br />lizing this state. For the climate change PB, there <br />is already much literature on which to base <br />such an assessment. For others, such as strato- <br />spheric ozone, ocean acidification, extinction <br />rates, and P and N cycles, we have used estimates <br />of preindustrial values of the control variable <br />as a Holocene baseline. Where large, undesira- <br />ble thresholds exist and have been studied (e.g., <br />polar ice sheets, Amazon rainforest, aragonite <br />dissolution, atmospheric aerosols, and the south <br />Asian monsoon), quantitative boundaries can be <br />readily proposed. For others, where the focus is <br />on erosion of Earth - system resilience, the bound- <br />aries are more difficult (but not impossible) to <br />quantify, as reflected in larger uncertainty zones. <br />We used large -scale assessments of the impacts <br />of human activities on Earth - system functioning <br />[e.g., Intergovernmental Panel on Climate Change <br />(17 18), the International Geosphere- Biosphere <br />Programme synthesis (16), and chemicals (75, SO)] <br />as sources of community -level understanding <br />on which to propose PBs. Our update has also <br />relied on post -2009 assessments of individual <br />boundaries by the relevant expert research com- <br />munities; examples include phosphorus (3), ni- <br />trogen (5), biosphere integrity (7), freshwater use <br />(5, 63), and novel entities [with a focus on chem- <br />icals (28, 73)]. Finally, some new analyses have <br />been undertaken specifically for this paper: (i) a <br />freshwater -use PB based on the EWF approach <br />(33, 63); (ii) the linkage of the phosphorus and <br />nitrogen boundaries via the N:P ratio in grow- <br />ing crop tissue (33); and (iii) the use of major <br />forest biomes as the basis for the land - system <br />change PB (33). <br />REFERENCES AND NOTES <br />1. J. Rockstrom et al., Planetary boundaries: Exploring the safe <br />operating space for humanity. Ecol. Sec. 14, 32 (2009). <br />http: / /www.ecologyandsoclety .org /voII4 /Iss2 /art32/ <br />2. J. Rockstrom et al., A safe operating space for humanity. <br />Nature 461, 472 -475 (2009). doi: 10.1038/461472a; <br />Amid: 19779433 <br />3. S. R. Carpenter, E. M. Bennett, Reconsideration of the <br />planetary boundary for phosphorus. Environ. Res. Lett. 6, <br />014009 (2011). doi: 10.1088/1748 - 9326/6/1/014009 <br />4. S. W. Running, Ecology. A measurable planetary boundary <br />for the biosphere. Science 337, 1458 -1459 (2012). <br />doi: 10.112E /sclence.1227620; Amid: 22997311 <br />5. W. de Vries, J. Kros, C. Kroeze, S. P. Seitzinger, Assessing <br />planetary and regional nitrogen boundaries related to food <br />security and adverse environmental impacts. Curr. Opinion <br />Environ. Sust. 5, 392 -402 (2013). doi: 10.1016/ <br />j.cosust.2013.07.004 <br />6. D. Gerten et al., Towards a revised planetary boundary for <br />consumptive freshwater use Role of environmental flow <br />requirements. Curc Opinion Environ. Sust. 5, 551 -558 (2013). <br />doi: 10.101E /j.cosust.2013.11.001 <br />7. G. M. Mace et al., Approaches to defining a planetary boundary <br />for biodiversity. Glob. Environ. Change 28, 289 -297 (2014). <br />doi: 10.101E /j.gloenvc ha.2014.07.009 <br />8. V. Galaz, Global Environmental Governance, Technology and <br />Politics: The Anthropocene Gap. (Edward Elgar, Cheltenham, <br />UK, 2014). <br />9. UN GSP (UN High -Level Panel on Global Sustainability), <br />Resilient People, Resilient Planet: A Future Worth Choosing <br />(Report for the 2012 Rio +20 Earth Summit, United Nations, <br />New York, 2012). <br />10. WBCSD (World Business Council on Sustainable Development), <br />Action 2020 Overview (WBCSD, Geneva, Switzerland, <br />http: / /actlon2O2O.org, accessed 18 June 2014). <br />11. R. Costanza, L. Graumlich, W. Steffen, Eds., Integrated History <br />and Future of People on Earth (MIT Press, Cambridge, <br />MA USA, 2006). <br />12. S. Sorlin, P. Warde, in Nature's End: History and the <br />Environment, S. Sorlin, P. Warde, Eds. (Palgrave MacMillan, <br />London, 2009), pp. 1 -19. <br />13. R. C. Bishop, Endangered species and uncertainty: The <br />economics of a safe minimum standard. Am. J. Agric. Econ. 61, <br />10 -18 (1978). doi: 10.2307/1240156 <br />14. T. M. Crowards, Safe minimum standards: Costs and <br />opportunities. Ecol. Econ. 25, 303 -314 (1998). doi: 10.1016/ <br />S0921- 8009(97)00041 -4 <br />15. W. Steffen, J. Crutzen, I R. McNeill, The Anthropocene: Are <br />humans now overwhelming the great forces of Nature? <br />Ambio 36, 614 -621 (2007). doi: 10.1579/0044 - 7447(2007)36 <br />[614:TAAHNOJ2.0.CO;2; Amid: 18240674 <br />16. W. Steffen et al., Global Change and the Earth System: A Planet <br />Under Pressure (The IGBP Book Series, Springer - Verlag, <br />Berlin, Heidelberg, New York, 2004). <br />17. IPCC (Intergovernmental Panel on Climate Change), Managing <br />the risks of extreme events and disasters to advance <br />climate change adaptation. A special report of Working Groups <br />I and II of the IPCC. C.B. Field et al., Eds. (Cambridge <br />University Press, Cambridge, UK (2012). doi: 10.1017/ <br />CB09781139177245 <br />18. IPCC (Intergovernmental Panel on Climate Change), Climate <br />Change 2013: The Physical Science Basis. Summary for <br />Policymakers., L. Alexander et al., Eds. (IPCC Secretariat, <br />Geneva, Switzerland, 2013). doi: 10.1017/CB09781107415324 <br />19. P. J. Crutzen, Geology of mankind. Nature 415, 23 (2002). <br />doi: 10.1038/415023a; Amid: 11780095 <br />20. K. Richardson, W. Steffen, D. Liverman, Climate Change: Global <br />Risks, Challenges and Decisions (Cambridge Univ. Press, <br />Cambridge, UK, 2011). <br />21. T. M. Lepton et al., Tipping elements in the Earth's climate <br />system. Proc. Natl. Acad. Sci. U.S.A. 105, 1786 -1793 (2008). <br />doi: 10.1073/pnas.0705414105; Amid: 18258748 <br />RESEARCH ( RESEARCHARTICLE <br />22. M. Scheffer et al., Early- warning signals for critical <br />transitions. Nature 461, 53 -59 (2009). doi: 10.1038/ <br />natureO8227; Amid: 19727193 <br />23. S. R. Carpenter, W. A. Brock, Rising variance: A leading <br />indicator of ecological transition. Ecol. Lett. 9, 311 -318 (2006). <br />doi: 10.1111/j.1461- 0248.2005.00877.x; Amid: 16958897 <br />24. 1 Bakke et al., Rapid oceanic and atmospheric changes during <br />the Younger Dryas cold period. Nat. Geosci. 2, 202 -205 <br />(2009). doi: 10.1038 /ngeo439 <br />25. M. Scheffer et al., Anticipating critical transitions. Science <br />338, 344 -348 (2012). doi: 10.112E /sclence.1225244; <br />pmid:23087241 <br />26. R. Wang et al., Flickering gives early warning signals of a <br />critical transition to a eutrophic lake state. Nature 492, <br />419 -422 (2012). doi: 10.1038 /nature11655; Amid: 23160492 <br />27. R. Biggs, S. R. Carpenter, W. A. Brock, Turning back from <br />the brink: Detecting an impending regime shift in time to avert <br />it. Proc. Natl. Acad. Sci. U.S.A. 106, 826 -831 (2009). <br />doi: 10.1073/pnas.0811729106; Amid: 19124774 <br />28. M. MacLeod et al., Identifying chemicals that are planetary <br />boundary threats. Environ. Sci. Technol. 48, 11057 -11063 <br />(2014). doi: 10.1021/es501893m; Amid: 25181298 <br />29. C. S. Holling, Resilience and stability of ecological systems. <br />Annu. Rev. Ecol. Syst. 4, 1 -23 (1973). doi: 10.1146 /annurev.es. <br />04.110173.000245 <br />30. C. Folke et al., Resilience thinking: Integrating resilience, <br />adaptability and transformability. Ecol. Sec. 15, 20 (2010). <br />www.ecologyandsoclety .org /voII5 /Iss4 /art2O <br />31. T. P. Hughes, S. Carpenter, I Rockstrom, M. Scheffer, <br />B. Walker, Multiscale regime shifts and planetary boundaries. <br />Trends Ecol. Evol. 28, 389 -395 (2013). doi: 10.1016/ <br />j.tree.2013.05.019; Amid: 23769417 <br />32. T. M. Lepton, H. T. P. Williams, On the origin of planetary -scale <br />tipping points. Trends Ecol. Evol. 28, 380 -382 (2013). <br />doi: 10.101E /j.tree.2013.06.001; Amid: 23777818 <br />33. Supplementary text, figures, and tables are available on <br />Science Online. <br />34. NOAA (National Oceanic and Atmospheric Administration), <br />NOAA -ESRL Annual CO2 Data, accessed at: http: / /co2now. <br />org /Current- CO2 /CO2 -Now /annual- co2.htmI (2014). <br />35. S. E. Perkins, L. V. Alexander, J. Nairn, Increasing frequency, <br />intensity and duration of observed global heat waves and warm <br />spells. Geophys. Res. Lett. 39, L20714 (2012). doi: 10.1029/ <br />2012GLO53361 <br />36. A. Shepherd et al., A reconciled estimate of ice -sheet mass <br />balance. Science 338, 1183 -1189 (2012). doi: 10.1126/ <br />sclence.1228102; Amid: 23197528 <br />37. M. R. Helmus, T. J. Bland, C. K. Williams, A. R. Ives, <br />Phylogenetic measures of biodiversity. Am. Nat. 169, E68 -E83 <br />(2007). doi: 10.1086/511334; Amid: 17230400 <br />38. S. D'agata et al., Human - mediated loss of Phylogenetic <br />and functional diversity in coral reef fishes. Corr. Biol. <br />24, 555 -560 (2014). doi: 10.101E /j.cub.2014.01.049; <br />pmid:24560574 <br />39. A. D. Barnosky et al., Has the Earth's sixth mass extinction <br />already arrived? Nature 471, 51 -57 (2011). doi: 10.1038/ <br />nature09678; Amid: 21368823 <br />40. N. W. Mason, F. de Bello, D. Mouillot, S. Pavoine, S. Dray, A <br />guide for using functional diversity indices to reveal changes <br />in assembly processes along ecological gradients. J. Veg. <br />Sci. 24, 794 -806 (2013). doi: 10.1111 /jvs.12013 <br />41. R. J. Scholes, R. Biggs, A biodiversity intactness index. Nature <br />434, 45 -49 (2005). doi: 10.1038 /natureO3289; <br />pmid:15744293 <br />42. B. Cardinale, Ecology. Impacts of biodiversity loss. Science <br />336, 552 -553 (2012). doi: 10.1126 /sclence.1222102; <br />pmid:22556243 <br />43. D. U. Hooper et al., A global synthesis reveals biodiversity <br />loss as a major driver of ecosystem change. Nature 486, <br />105 -108 (2012). doi: 10.1038 /nature11118;pmid: 22678289 <br />44. BAS (British Antarctic Survey), "Antarctic ozone" www. <br />antarctica.ac.uk/ met /jds /ozone /index.html#data, I Shanklin, <br />British Antarctic Survey (2013). <br />45. Royal Society, Ocean Acidification Due to Increasing <br />Atmospheric Carbon Dioxide. Policy Document 12/05 (The <br />Royal Society, London, 2005). <br />46. 1 M. Guinotte, V. J. Fabry, Ocean acidification and its potential <br />effects on marine ecosystems. Ann. N. V. Acad. Sci. 1134, <br />320 -342 (2008). doi: 10.119E /annals.14 39.013;pmid: 18566099 <br />47. D. J. Conley, Terrestrial ecosystems and the global <br />biogeochemical silica cycle. Global Biogeochem. Cycles 16, <br />681 -688 (2002). doi: 10.1029/2002GBOO1894 <br />SCIENCE sciencemag.org 13 FEBRUARY 2015 • VOL 347 ISSUE 6223 1259555 -9 <br />